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Received 16 June 1997

Abstract. The Hartree–Fock (HF) approximation is generalized to the study ofn-particle
states, taking correlation effects in interacting quantum-mechanical many-particle systems
systematically into account. The case ofn = 2 is developed explicitly. It is shown that
the form of the HF equations remains essentially the same as in the usual formulation, but
with appropriate interpretations of various parameters in terms ofn-particle, rather than single-
particle, states. We show results of calculations for model systems that illustrate the power of
the method when compared to ordinary versions of the HF treatment.

1. Introduction

The various forms of the Hartree–Fock (HF) approximation, to be referred to as Hartree–
Fock theory (HFT), provide one of the best known [1–4] methods for the study of interacting
quantum many-particle systems in condensed matter physics, such as the electron cloud in
atoms, molecules, or solids.

The most serious and long-standing objection to the Hartree–Fock approximation is its
neglect of correlation effects which are, in fact, defined as differences between exact results
and the results obtained using the HF method. This difficulty remains in the various forms
in which the HFT has been expressed, such as in Dirac’s [5] and Löwdin’s [6] formulations
based on the properties of density matrices. In fact, attempts to treat correlations within the
HF scheme usually involve additional procedures, such as Jastrow’s construction [3].

In this paper, we show that, contrary to conventional wisdom, the HF method can
be generalized within ann-particle framework,nHF, which allows the direct treatment of
correlations in a systematic way asn increases. In this generalization, the basic formal
construct of the HF method remains unchanged, but this construct is applied ton-particle
states rather than to states describing a single particle.

There is an additional motivation for searching for ann-particle description of interacting
quantum systems. It is conceivable that there may exist states of such systems which are
not accurately described within a single-particle picture [7]. Furthermore, the study of
many physical properties of materials, e.g. transport properties, can be expressed most
conveniently in terms of two-particle Green functions. It appears that a method which leads
directly to the calculation of two-particle quantities such as the wave function (or the Green
function) for a system of interacting particles may be of some benefit.

† Present address: Oak Ridge National Laboratory, Oak Ridge, TN 37831-6114, USA.
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It should be pointed out that the formalism as presented here bears some formal
resemblance to the theory of so-called geminals [8, 9], or two-particle states, that were
commanding some interest a few years ago. However, that theory suffers from a severely
limiting handicap, namely that it does not lend itself to the construction of a many-particle
wave function that has the proper symmetry, i.e., Fermi–Dirac or Bose–Einstein. This
difficulty arises because it is not possible to construct properly symmetric (or antisymmetric)
N -particle states with respect to individual particle coordinates out ofn-particle states
(n < N) that are determined independently of one another. It is well known that there
exists no building-up principle forn-tuples of states because these states cannot be ordered
in energy in such a way that their use to construct the finalN -particle state is consistent
with the requirements of the exclusion principle. A simple illustration of this feature is
provided in the body of the paper in connection with a simplified treatment of the four
electrons of the Be atom. This feature is completely avoided in the generalization of the HF
method presented here. In the present approach, one considers only thosen-particle states
which can be deduced from the system wave function that is properly antisymmetrized with
respect to the indices of individual particles. Thus, only those states which are allowed by
the Pauli principle are used throughout the solution process. Furthermore, this approach is
not restricted to a particular value ofn, but is applicable to any partition of the system into
sets of particles, each set containingni particles, so that

∑
i ni = N , the total number of

particles in the system. On the other hand, we know of no generalization of the theory of
geminals ton-tuples of particles withn > 2.

It may be useful at this point to summarize the mathematical basis of our method in
connection to a system of fermions (the treatment of bosons is similar, with the replacement
of determinants in the following discussions by permanents). It rests on the observation that
any determinant of orderN can be written as a sum of products of determinants of ordersn

andN − n. This is Laplace’s [10] theorem for expanding a determinant, which contains as
a special application the elementary expansion in terms of individual elements along a row
(or column) and their minors. This theorem allows one to write the expanded form of a
Slater determinant in terms of determinants associated with specific sets of particles and all
possible combinations of states. The idea now is to begin with such a construction for the
case of non-interacting electrons, and allow these determinantal states, which are consistent
with the exclusion principle, to evolve under the influence of external and/or inter-particle
interactions. The equations describing this evolution of states are obtained by minimizing
an energy expectation value as in ordinary HFT, but with respect ton-particle states. In
fact, the starting point of the iterations for solving thesenHF equations can be obtained
from the ordinary FH method, since these latter can be thought of as evolving out of a set
of non-interacting states under the influence of external and inter-particle fields as treated
within the method.

One word on notation before we turn to formal considerations. We indicate non-
interacting states (or states that can be described by means of single-particle quantum
numbers) by a zero subscript (or superscript as convenient). The states that evolve out
of combinations of such single-particle states, and which are no longer describable in terms
of single-particle quantum numbers, are indicated by the same symbols but with no zero
subscripts or superscripts. We hope that this notation, introduced only to simplify the
presentation, will not lead to confusion.

In what follows, we show how the HF method can be formulated in terms ofn-particle
states, rather than the customary single-particle formulation. To keep the notation simple,
we will assume thatn = 2. The derivation forn > 2 follows straightforwardly and will be
commented upon thereafter.
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2. The Hartree–Fock method forn-particle states

The Hamiltonian describing anN -particle interacting system is taken to have the form (in
units of h̄2/2m = 1)

H =
N∑
i=1

−∇2
i +

N∑
i=1

v(ri )+ 1

2

N∑
i 6=j

v(ri , rj ) (1)

where∇2 is the three-dimensional Laplacian,v(ri ) denotes an external potential acting on
the particle atri , andv(ri , rj ) is a pairwise interaction between the particles atri andrj .
When the latter is zero the system is termed non-interacting, and for this case the solution
of the corresponding Schrödinger equation can be constructed out of single-particle states,
which we denote by

φν(r) =
[
ν

r

]
0

in terms of a single Slater determinant:

90
ν1ν2···νN (r1, r2, . . . , rN) = Â

[
ν1

r1

]
0

[
ν2

r2

]
0

· · ·
[
νN
rN

]
0

(2)

whereνi andri , respectively, represent state and particle coordinates that include the spin
degree of freedom. For fermions,̂A is the antisymmetrizing operator with respect to the
state indices (symmetrizing in the case of bosons).

This Slater determinant in terms of single-particle states can also be viewed as a linear
combination of product states which constitute individual states in 3N -dimensional space
that can be labelled with the particular permutation of single-particle indices. Retaining
the linear coefficients, which are either 1 or−1 depending on the sign of the permutation,
we now switch on the interaction between particles and let the individual states in 3N -
dimensional space evolve under its influence; i.e., inN -particle space this interaction appears
as an external potential, which allows a description of the time evolution of the system in
terms of scattering off this external potential. This is exactly analogous to the scattering
description (the Lippmann–Schwinger equation formulation) of the Schrödinger equation
for a single particle moving in an external field. The interacting states in 3N -dimensional
space can thus be found, at least formally, by solving an associated Lippmann–Schwinger
equation inN -particle space. Combining the individual interacting states in 3N -dimensional
space with the original linear coefficients that we have retained from the non-interacting
system yields the correctly symmetrizedN -particle wave function

9ν1ν2···νN (r1, r2, . . . , rN) =
[
ν1 ν2 · · · νN
r1 r2 · · · rN

]
(3)

that has evolved out of the non-interacting solution, equation (2).
At this point, it is important to clarify the meaning of the indices labelling single-

particle states in the many-body wave function for the interacting system that occur in the
last expression. In the interacting system, individual particles lose their significance and a
description of the system in terms of single-particle states is in general inappropriate. The
indices can still be used to label the state of the system in terms of the single-particle states
describing a non-interacting system from which the final state evolves under the action of
the inter-particle potential. Thus, the set of single-particle indices is to be considered as a
single, collective index that labels the final state. This interpretation is also to be used in
terms of the two-particle states that occur in the following discussion.
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Solving for the fully interacting wave function in 3N -dimensional hyperspace is of
course a formidable task and an approximate treatment is usually required. The route that
we will take here relies on the fact that, from Laplace’s theorem [10], the non-interacting
solution of equation (2) can be written in terms ofn-particle units (to simplify the notation
we taken = 2 andN to be a multiple of 2), i.e.,

90
ν1ν2···νN (r1, r2, . . . , rN) = Â

[
ν1 ν2

r1 r2

]
0

[
ν3 ν4

r3 r4

]
0

· · ·
[
νN−1 νN
rN−1 rN

]
0

(4)

with Â being applied to the state indices. The two-particle units[
ν µ

r1 r2

]
0

used in this last expression are Slater determinants constructed from the two single-particle
states [

ν

r1

]
0

and

[
µ

r2

]
0

.

In a similar way, we also partition the Hamiltonian of the interacting system into distinct
sets of particles, so that a given particle is a member of only one pair, and choose the
pairing to correspond to the partition of particles in the wave function (the lower row in
equation (3)). Denoting the pair formed by particlesi1 and i2 by I , and the points of the
corresponding two-particle space byxI = (ri1, ri2), we have

H =
∑
I

(−∇2
I + V (xI ))+

1

2

∑
I,J 6=I

V (xI ,xJ ) (5)

where∇2
I is the six-dimensional Laplacian operating in the spacex, the quantityV (xI ) is

an externalpotential acting on a pair of particles,

V (xI ) = v(ri1)+ v(ri2)+ v(ri1, ri2) (6)

andV (xI ,xJ ) is the interaction between pairsI andJ ,

V (xI ,xJ ) = v(ri1, rj1)+ v(ri1, rj2)+ v(ri2, rj1)+ v(ri2, rj2). (7)

We note that the inter-particle interaction between the members of a given pair appears as
an external local potential acting on the pair at pointx. Thus, similarly to theN -particle
treatment that led to equation (3) we can determine interacting two-particle wave functions[

ν µ

r1 r2

]
p

which evolve out of the non-interacting two-particle determinants[
ν µ

r1 r2

]
0

.

The subscriptp was introduced to distinguish the two-particle wave function of the partially
interacting system, for which inter-pair interactions of equation (7) are neglected, from two-
particle wave functions of the fully interacting system which will be introduced below. The
full wave function of the partially interactingN -particle system can be found from the same
linear combination as was used to construct the determinant in equation (4). We denote this
procedure by the following expression:[
ν1ν2| ν3ν4| · · · | νN−1νN
r1r2| r3r4| · · · | rN−1rN

]
p

= Â
[
ν1 ν2

r1 r2

]
p

[
ν3 ν4

r3 r4

]
p

· · ·
[
νN−1 νN
rN−1 rN

]
p

(8)
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where the vertical bars indicate the two-particle nature of the states that the full wave
function in this construction consists of.

The interaction between pairs, equation (7), can now be included in an approximate
way similar to that in which the inter-particle interaction is included in the ordinary HF
approximation. To facilitate the derivation of thenHF equations, we briefly recall the
essence of the canonical HF theory.

2.1. The canonical HF equations

We start by recalling that in ordinary HF theory the non-interacting and the interacting
single-particle states which form the Slater determinant are taken to satisfy the conditions
of orthonormality:∫

d3r

[
ν

r

]∗
0

[
µ

r

]
0

=
∫

d3r

[
ν

r

]∗ [
µ

r

]
= δνµ (9)

and completeness:

∑
ν

[
ν

r

]∗
0

[
ν

r′

]
0

=
∑
ν

[
ν

r

]∗ [
ν

r′

]
= δ(r − r′). (10)

The (single-particle) HF equations are derived by taking expectation values of the
Hamiltonian with respect to the determinantal wave function, incorporating the ortho-
normality condition by means of a Lagrange multiplier, and minimizing the expression{

〈9|H |9〉 −
∑
ν

εν

∫
d3r

[
ν

r

]∗ [
ν

r

]}

with respect to[
ν

r

]∗
.

This yields the ‘eigenvalue’ equation

F

[
ν

r

]
= εν

[
ν

r

]
(11)

in terms of the well-known Fock operator [2].
The explicit expressions of the HF equations in the coordinate representation take the

form[
−∇2+ v(r)+

N∑
µ6=ν

∫
d3r ′ v(r, r′)

]
φν(r)−

N∑
µ6=ν

∫
d3r ′ v(r, r′)φµ(r) = ενφ∗ν (r). (12)

We note the presence of the direct or Hartree term and the exchange term, the third term
inside the brackets and the first term outside, respectively. The termν = µ can be included
in the direct term since it is cancelled by the corresponding inclusion into the exchange term.
Therefore, we have the well-known result that the HF approximation does not include self-
interaction terms.
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2.2. Generalization to two-particle states

We now extend the formalism just summarized to two-particle states. Similarly to their
single-particle counterparts, the two-particle states have the following orthonormality∫

d3r1 d3r2

[
ν µ

r1 r2

]∗
0

[
ν′ µ′
r1 r2

]
0

=
∫

d3r1 d3r2

[
ν µ

r1 r2

]∗ [
ν′ µ′
r1 r2

]
= δνν′δµµ′ − δµν′δνµ′ (13)

and completeness∑
νµ

[
ν µ

r1 r2

]∗
0

[
ν µ

r′1 r′2

]
0

=
∑
ij

[
ν µ

r1 r2

]∗ [
ν µ

r′1 r′2

]
= δ(r1− r′1)δ(r2− r′2)− δ(r1− r′2)δ(r2− r′1)

(14)

relations. In order to derive the HF equations in a manner analogous to that given above,
we perform a variational procedure. In this procedure it is convenient to identify clearly
and uniquely the particle space in which the two-particle wave functions are acting. This
identification is considerably easier when the particle pairings are uniquely and distinctly
defined, as is done in constructing the wave function or in partitioning the Hamiltonian. We
can now obtain an eigenvalue-like equation for the two-particle states[

ν µ

r1 r2

]
by following the same formal procedure as in the single-particle case. From the variational
condition

δ

[
〈9|H |9〉 −

∑
νµ

ενµ

∫
d6x

[
νµ

x

]∗ [
νµ

x

]]
= 0 (15)

with respect to[
νµ

x

]∗
.

This variational condition is unambiguously defined since the coordinatex is unique and
remains intact throughout the process. This is the result of constructing the wave function by
applying the statistics to the state indices (for the initial state), which keeps the association of
particles into units the same throughout. In the coordinate representation, the 2HF equation
can be written in the form[
−∇2

x + V (x)+
∫

d6x ′ V (x,x′)ρ(νµ)(x′)
] [

νµ

x

]
+

∑
(ν ′,µ′)6=(ν,µ)

∫
d6x ′

[
ν ′µ′

x′

]∗
V (x,x′)

×
{[
νµ| ν ′µ′

x| x′

]
−
[
νµ

x

] [
ν ′µ′

x′

]}
= ενµ

[
νµ

x

]
(16)

where the two-particle density,ρ(νµ)(x), is given by the expression

ρ(νµ)(x) =
∑

(ν ′,µ′)6=(ν,µ)

[
ν ′µ′

x

]∗ [
ν ′µ′

x

]
. (17)
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Here, the indicesν ′, µ′ run over all state indices associated with the initial state of the
system. As derived above, the two-particle state solutions of equation (16) are properly
antisymmetrized with respect to individual particle coordinates, but are no longer expressible
as determinants of single-particle states. This is a direct consequence of approximating
the many-particle wave function by means of two-particle states, equation (8). In the
non-interacting limit these are indeed second-order determinants. Under the inter-particle
interaction, the latter evolve into two-particle states which have been treated as interactions
with other such states in a manner analogous to that in which single particles interact with
one another in ordinary HF theory. From these solutions, an approximate many-particle
wave function can be constructed, e.g., equation (8). This wave function can then be used
to compute expectation values of operators such as the Hamiltonian to obtain the corres-
ponding observables.

The generalized two-particle HF equations are seen to have structure equivalent to their
single-particle counterparts, exhibiting the presence of a direct term, written in terms of the
density, and an ‘exchange’ term. Like the canonical HF equations, the present expressions
do not contain spurious self-interaction terms. However, unlike the single-particle equations,
they allow the determination of correlated two-particle states, removing to this extent the
most basic objection to the HF method.

Finally we note that Laplace’s theorem [10] applies to any subdivision of theN particle
system and not just to the two-particle units chosen in equation (4). It is thus a matter
of simple algebra to become convinced that the generalized HF equations preserve their
form under arbitrary partitions of the system ofN particles into separate sets containingnν
particles each, such that

∑
ν nν = N .

2.3. The system wave function

It is clear from what has been said above that thenHF equations lead to states that consist of
all possible combinations ofN particles (or states) takenn at a time, and their corresponding
energy levels. In that sense, they seem to contain more information than necessary to
construct the wave function of the system out of thesen-tuple states.

The system wave function can be constructed in a straightforward way by starting from
a product ofn-tuple sates which evolves out of a product of non-interacting states, and
symmetrize (or antisymmetrize) with respect to particle indices (since state indices are no
longer discernible in the interacting states). The energy of the system is given by adding
the energies corresponding to the states entering the initial product just mentioned. Because
there may be several ways of identifying such a product, a search should be conducted to
determine that product which yields the lowest energy.

3. An illustrative case: Be

In this section, we provide explicit expressions for the pair wave functions that are
determined within a simple application of the 2HF method in the case of a four-particle
system such as the Be atom. Although the following discussion is inadequate for a realistic
description of the Be atom, which would require a linear combination of determinants, it is
sufficient for illustrating some basic elements of our formalism.

Beryllium has four electrons and its ground-state configuration is 1s22s2. Let χnlσ (m)
denote that particlem is in state|nlσ 〉, characterized by principal quantumn, orbital quantum
numberl, and spinσ (we will use a bar to denote opposite spin directions). (The extent
to which such a description in terms of single-particle states is meaningful in the case of
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an interacting system poses a very relevant question, but one which is somewhat beside the
point for the present discussion.) Labelling the electrons 1, 2, 3 and 4, we can construct
an (approximate) wave function for the entire system by antisymmetrizing the product
χ1s↑(1)χ1s↓(2)χ2s↑(3)χ2s↓(4) with respect to particle indices. Furthermore, the solutions of
a single-particle (effective) Schrödinger equation,χnlσ , can be arranged uniquely in order
of ascending energy in a way in which each level can be occupied by two electrons so that
the final wave function satisfies the Pauli principle. This way of building up the electron
occupation of energy levels is unique and leads to the well-knownaufbau prinzip(building-
up principle) originally formulated by Bohr. This principle is, however, apparently confined
to single-particle states and has no counterpart in terms of states ofn particles determined
independently from one another.

To see this, consider first a non-interacting system described by hydrogen-like wave
functions. We note that any pair state of the formχ1sσ χnlσ ′ has an energy lower than
χ2sσ χ2sσ̄ , and that there are an infinity of such states betweenχ1sσ χ1sσ̄ and χ2sσ χ2sσ̄ .
It is, therefore, impossible to describe the ground state of Be by selecting only those
combinations forming pair states that minimize the energy while being consistent with the
exclusion principle. The same difficulty persists when correlated pair states, e.g., geminals,
are considered. It remains, obviously, for any value ofn in determining correlatedn-particle
states. (We know of no attempt to extend the theory of geminals beyondn = 2.) For this
reason, the theory of geminals has not met with much success and is more or less abandoned
at present.

Given this state of affairs, one wonders whether similar difficulties can arise in the
case of the pair states (orn-particle states) in the present extension of the HF method. This
however is not the case: the formal element which distinguishesnHF theory from the theory
of geminals and leads to acceptable and viable procedures in the former where the latter
has failed is the incorporation of the correct statistics throughout the solution process.

Consider again the case of atomic Be approximated by a single Slater determinant made
up of the wave functions of the ground state of the atom. We will treat this ground state
as being exact (as it is for a fictitious system of non-interacting electrons) to illustrate the
behaviour of the results expected within thenHF theory. This determinantal wave function
has 4!= 24 terms, each consisting of products of single-particle states. It follows from
Laplace’s theorem [10] on the expansion of determinants that the expanded form of the
determinant can be rearranged in terms of a sum of products of determinants of ordern

and 4− n, n < 4. Furthermore, in each such product, particle indices can be made to
appear in the same order, e.g., 1, 2, 3, 4, but with each particle index associated with
all possible states. Clearly each product that enters the construction of the system wave
function is consistent with the Pauli principle. Choosingn = 2, and denoting by the symbol
|α1(1)α2(2) · · ·αn(n)| a determinantal wave function ofn particles, we can express the wave
function for the ground state of a Be atom in the form

90 = |χ1s↑(1)χ1s↓(2)χ2s↑(3)χ2s↓(4)|
= |χ1s↑(1)χ1s↓(2)||χ2s↑(3)χ2s↓(4)|
− |χ1s↑(1)χ2s↑(2)||χ1s↓(3)χ2s↓(4)| + |χ1s↑(1)χ2s↓(2)||χ1s↓(3)χ2s↑(4)|
− |χ1s↓(1)χ2s↑(2)||χ1s↑(3)χ2s↓(4)| + |χ1s↓(1)χ2s↓(2)||χ1s↑(3)χ2s↑(4)|
+ |χ2s↑(1)χ2s↓(2)||χ1s↑(3)χ1s↓(4)|. (18)

The various determinantal wave functions shown here can be orthonormalized and are
complete in their respective spaces in the usual sense.

We note that each distinct pair of particles, say 1 and 2, occurs as the argument of
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all possible combinations of four single-particle states taken two at a time. Each such
combination leads to an interacting two-particle state with the corresponding energy. For
example, there is an energy associated with the two-particle state which evolves out of the
initial stateχ1s↑(1)χ2s↑(2) (although this final, interacting state does not necessarily allow
a description in terms of the single-particle states from which it has evolved). There are
clearly degeneracies in the various energy levels, and the wave functions associated with
them can be distinguished in terms of the partial symmetries under rotations in the separate
space of each particle (much in the way in which single-particle degenerate states in an
atom can be classified according to angular momentum symmetry (px , py , etc)).

It is a straightforward exercise to substitute the expression for the wave function given
above into the HF equation to obtain the general expression of equation (16). The resulting
expression makes clear the nature of the exchange terms, as a collection of terms as dictated
by the form of the wave function, rather than as a single term as in the traditional treatment.

4. Numerical illustration

We have carried out numerical calculations to illustrate some of the simpler aspects of our
method. In what follows, the formalism of 2HF theory is implemented in a manner anal-
ogous to the so-called restricted HF approximation within the single-particle picture. In that
case, products of two single-particle number operators are decoupled into a number operator
and an averaged number operator. This procedure clearly disregards the effects of symmetry.
In the present case, a similar decoupling is implemented in terms of products of two-particle
number operators, and it also neglects symmetry effects. At the same time, the method
allows an improved treatment of correlation, which is the main thrust of the formalism.

The following three figures show single-particle spectra for four electrons (two with each
spin direction) on a linear ring of four sites. The single-particle single-band Hamiltonian
describing thenon-interactingsystem is defined by its matrix elements in a tight-binding
representation:

H
(1)
ij = εiδij + tij (19)

whereεi is an on-site energy, andtij represents electron hopping from sitei to sitej and
is taken to connect only nearest-neighbour sites. In the calculations reported here, we set
εi = 0 and t = 1.0. Also, the energies were assigned an imaginary part oft/4.0 for ease
of presenting the spectra. Within this picture, a description of inter-particle interactions is
often given by means of a termUijninj being added to the Hamiltonian of non-interacting
particles, whereUij represents the Coulomb repulsion between two electrons on sitesi and
j , andni is the number operator for an electron on sitei. Usually,U is taken to be site
diagonal and we will also take this to be the case. In a (restricted) HF treatment of this
model Hubbard Hamiltonian, the pair of number operatorsnini is decoupled by replacing
one of the two operators by its expectation value. This in turn leads to a Hamiltonian of
the non-interacting type, equation (19), but with all on-site energies displaced by an amount
U〈ni〉. In this description the structure of the single-particle spectrum remains identical to
that for non-interacting particles.

We now generalize the HF treatment just described to two-particle space. The two-
particle space associated with a ring of four sites is a torus of 16 sites and the Hamiltonian
describing two non-interacting particles has the form

H
(2)
ij ;kl =

[
εi + εj

]
δikδjl + t

[
(1− δik)δjl + (1− δjl)δik

]
. (20)

This describes a single particle on a torus with site energiesεi + εj (corresponding to two
particles on the linear ring being at sitesi and j ), and nearest-neighbour hoppingt . The
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interaction between the particles is described by the operatorf (U)ninjnknl , wheref (U)
is a function of the configuration. Thus, when the indicesi, j, k, l are all different from
one another,f (U) = 0.0. When only two of the indices are identical,f (U) = U , and in
the case of two different pairs of identical indices,f (U) = 2U . In the present version of
the HF approximation, we decouple the four number operators by replacing two of them by
their expectation value (average). In this case, we find that the sites along the main diagonal
of the torus have their on-site energies shifted by an amount 2U〈nknk〉 + U〈nknl〉 = 5

4U ,
while the energies on sites off the diagonal are shifted byU〈nini〉 = U/4. Thus, the two-
particle interacting Hamiltonian, which would contain a termU along the main diagonal of
the torus, has all on-site energies shifted by the average energy of a pair of opposite-spin
electrons on a site.
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Figure 1. Single-particle spectra for a ring with four sites withU = 0.1. The solid line is
the spectrum calculated from the restricted HF treatment while the dashed line is the spectrum
obtained with the 2HF treatment, and the dotted line is the exact spectrum.

Figures 1, 2 and 3 show the single-particle spectra for four electrons on a ring of four
sites (a half-filled band) obtained in the ordinary version of the HF treatment (restricted HF
treatment) (solid lines) and in the two-particle generalization of this approach described
above (dashed lines), compared to the exact results (dotted line). The exact results
were obtained from the exact Green function of the four-electron system by inverting
the full configurational matrix in four-particle space, and integrating out (summing over)
the coordinates of three of the particles [11]. The three figures correspond to the cases
U = 0.1, U = 1.0 andU = 10.0. Also, for the sake of ease of comparison, we do not
display the shift in the on-site energies since they do not affect the structure of the spectra.

As the results presented above indicate, the single-particle restricted HF approximation
is completely insensitive to the presence of inter-particle interactions. On the other hand,
the use of the 2HF treatment, the present method, which essentially consists of the treatment
of two-particles within a restricted scheme, provides a much improved representation of the
exact spectra. It is, of course, not exact, since it misses the exchange interaction which is
expected to be more important for smallU (figure 1). However, for largeU (figure 3),
i.e. for strong correlations, the 2HF treatment gives a fairly accurate description of the band.
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Figure 2. Results analogous to those of figure 1 but forU = 1.0.
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Figure 3. Results analogous to those of figure 1 but forU = 10.0.

5. Discussion and conclusions

The method presented above provides a generalization of the traditional Hartree–Fock
treatment of interacting quantum systems, carried out within a single-particle picture, to the
case ofn-particle states, in whichn three-dimensional particles are treated as a single unit
(a point particle) in a space of 3n dimensions. The method is undoubtedly computationally
more difficult than the traditional Hartree–Fock one, but allows the direct treatment of the
effects of correlation between the members of ann-tuple of particles. It also leads directly
to n-particle correlated states. In a previous publication [11] an alternative approach to the
calculation ofn-particle states was presented that was based on a generalization of density
functional theory.

In the present formalism,n-particle states evolve out of a non-interacting many-particle
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state whose wave function possesses the proper symmetry under exchange of particle
coordinates. That initial state can also be taken to be the state determined as a result
of a HF treatment. It is clear thatnHF treatment will yield lower energies thanmHF
treatment form < n, since the larger the number of particles forming a unit, the more the
particles will be kept away from one another, thus lowering their potential energy.
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